
Subject DISTORTION EFFECTS IN BEAM TRANSPORT SYSTEMS 
WITH SPACE CHARGE 

I. Introduction 

Several authors’ have expressed concern over the distortions 

introduced by the fringing fields in the quadrupoles of a transport 

system. This note is an effort to identify the relevant parameters 

and to determine the seriousness of the effect. Space charge is inclu- 

ded in a linear approximation. 

II. Transport System 

We shall study the quadrupole fringing fields in a transport 

system which is taken to be periodic and non-relativistic in order to 

simplify the analysis. The system will consist of thin lenses (triplets) 

of focal length f separated by a length L. This permits us to retain 

circular symmetry. It is further assumed that the beam is matched 

so that a’iYaist”is reachedat the center of each lens and midway be- 

tween lenses. 

The envelope equation for an unbunched beam is 

P2 Q a"+Ka=- + a 3 
a 

where K is proportional to the external focusing force, VP is the 

x-x1 phase space area, and 

(1) 

Q = 
60 (ohms) e1 (amp) 

Mc2p3 
(2) 
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is the space charge parameter . -4t a thin lens of focal length f , we 

have 

Aal 1 
- = -- I a f 

and in free space 

2 
.ll:P f SL 

.3 a’ 

Assuming a waist midway between lenses, which is taken as the ori- 

gin of the coordinate system, one can integrate Eq. (4) to obtain 

p2 + 2Q !na 

a0 2 a0 ’ 

where a0 is the value of a at s = 0. Equation (5) can be integrated 

to obtain 

J da s = 

aO 
P2 
2 
aO 

- $ + 2QPn G 

I 

+ 

One therefore has 

2 

-5 =-F- 
s 

al/a0 

L aO 
dz I-J- + cLnz 1 

-+ 
, 1 z2 

(4) 

(5) 

(6) 

(71 

where ai is the value of a at the lens and where 
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2Qao2 
E = 

P2 

A properly matched beam will have 

a; 1 - = 
a1 z-. 

This gives 

2 
aO 

2f = - 
P z1 

I 

I-% + 
-+ 

E Pn z 1 ’ 
z1 1 

where 

z1 = aila 0 

(8) 

(9) 

One can think of a0 and al as the independent parameters, with L 

and f then being obtained from Eqs. (7) and (10). 

It is also useful to calculate the phase advance per period 

for each point in transverse phase space. This can be shown to be 

$ = PJz)? =Jal$[l->+ ePnz I-+ (12) 

We can obtain simple approximations valid near al/a0 = 1 

Setting 

al - = 
aO 

1 +A’, (13) 
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we have 

For E > > 1, these become 

4aoA 
L=m’ 

f 
aO 

= 2Am ’ 

4PA 
P 

A further useful approximation is the relation between quadrupole 

strength, magnet length, and equivalent thin lens focal length for a 

triplet. This is, for an P, I,,, 21, $, ! triplet 

1 -= 
f 

+ Ko213 + 2K0212Pi, 

(Isa) 

(15b) 

(15c) 

(16) 

where K 0 is defined as the coefficient of x in the equation 

x” + Kox = 0 (17a) 

y’l _ K# = 0, (17b) 

within a magnet, and PI is the effective separation between the ends 

of the quadrupole elements which are of length I, 21, P. 
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III. Fringing Field Effects 

An approximate form for the fringing impulse can be derived 

by assuming a field on axis with sharp boundaries. ‘ The result for a 

triplet of length P, ZP, P and “gradient” -KO, Kg, -KO is 

Ax’ = -K021 (3xy2 + x3), Ax = 0 (Isa) 

Ay’ = -Ko21 (3x2y + y3), Ay = 0 (18b) 

If we assume an ellipsoidal shape in the 4-dimensional phase space, 

the projection in x, x’ space will be determined by those particles 

with no motion in the y direction. The distortion of this phase pro- 

jection will therefore be determined by the x3 and y3 terms in Eq. (18a) 

and (i8b) respectively. 

The xy2 and x2y terms in Eqs. (18a) and (18b) will lead to an 

increase in r 
2 2 =x 
max max + ‘Z,lax 

which will not show up as a dis - 

tortion of the boundary in either the xx’ or yy’ projections. The two 

effects will therefore be evaluated separately. 

A. Non -Linear Uncoupled Terms 

The particles can now be considered to have displacements and 

angles at the triplets given by 

X = Asin 4 Y = Bsin+ 

x’ = A cos 4 
Pt y’ P 

= 2. cos gJ 
t 

(19) 

where pt is the Courant-Snyder p at the triplet. In terms of the 
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envelope 2 
al 

P, = p (20) 

and A = ai for the unperturbed beam. The change in amplitude due 

to the fringing field impulse is therefore given by 

2 
AA -p, x’Ax’ 
- = 
A. -Ko29 PtA2sin3 C$ cos $ 

A2 = 2 4 

Ko eal =- 
BP 

2sin 24 - sin4$ 1 (21) 

It is necessary to sum Eq. (21) over all triplets. This is accomplished 

by writing 4 = I$~ + np and summing over n. The distortion then sepa- 

rates into a part depending on 2 6 o which corresponds to the normal el- 

liptical transformation of a linear element, and a 4$. part which can 

only be interpreted as an equivalent beam growth. The maximum 

values of these equivalent distortions are given, for small )L. by 

AA2 
2 4 

Ko la1 - a 
A 4PY 

“elliptical” WW 

AA4 
2 4 

Ko Ia1 - m 
A4 i6Pp 

“spherical” Wb) 

valid for either the x or y oscillation. If we consider a triplet with 

Pi = 0, we can express Eq. (22) in terms of the parameters E , ao, P, 

A using Eqs. (13), (14), and (16). This leads to 
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AA2 
2 

3(2 + E) --L 
A 32 -$- (1 +A2)4, 

AA4 
2 

3(2 + E) aO ---h 
A 228 

2 (1 + A2)4 . 
P 
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(23a) 

(23b) 

Although all expressions are valid only to the lowest order in A, the 

(1 + A2)4 is retained since Eq. (23) is strongly dependent on A. 

B. Coupled Terms 

For the coupled terms one similarly has 

AAA = -; 
KOP ai2A2B2 (24a) 

P [2 sin 24 - sin 2 (4 - +) - sin 2 (4 + +)I 

2 

BAB = -+ 
KO 1 a 2A2B2 1 (24b) 

P [ 2 sin 24 + sin 2 (4 - 4) - sin 2( I$ + $)I 

The I$- 4 terms can accumulate over several triplets, but these for - 

tunately lead to no change in R2 = A2 + B2. In fact one finds a maxi- 

mum effect for A2 = B2 = al212 giving 

3 Ko21al 
4 

AR -cz -_ 
R 16 P [sin2$+sin2+-sin2($++)]. (24c ) 

Once again the distortion separates into an elliptical part (2 4 or 29 

which may be removable by a linear element, and a 4th harmonic 

part which represents equivalent beam growth. Specifically, for 

small p. 

AR2 3K02Pa2 
4 

-m 

R ~PP 
(25a) 
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AR4 3K02 1 ai 
- 21 

R 32Pp 

For the triplet with j1 = 0, we can write 

AR2 
2 

-* 
R 

9(2 + E) aO (1 + ,2)4 
64 - a2 

AR4 
2 

-* 
R 

9(2 + c) y (1 + A2)4 
256 I2 
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(25b) 

C. Compensation of “Elliptical” Term 

The form of the 24 term in Eqs. (21) and (24a) suggests that 

one can adjust the focal length of the triplet in order to provide some 

compensation. If the focal strength of each triplet is reduced by 

1 1 - = 
f f -6, 
eq 

there will be an additional (small impulse) given by 

Ax’ = X6 > 

Ay’ = y6 , 

leading to the amplitude changes. 

AAA = 
A2ai26 

2P sin 2 $ , 

B2a 2 6 
BAB 

1 
= 2P sin 2 +. 

(27) 

(29a) 

(2%) 
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As a result Eq. (22~~) is changed to 

AA2 
2 

al -‘Ir- 
A 4Pll 

)Ko2Qai2 -26 1, 

and Eq. (25a) is changed to 

AR2 1. 3a 

R 12 /Ko2Qai2 - t 6 I. 
8P!J 

A reasonable choice for 6 is 

3 
6 = ? Ko2 Q af2 , 

which gives 

AA2 
2 4 

Ko Qal - “” 
A 2OPp ’ 

and 

AR2 3K02 Q ai4 
- a 

R 4OPI-1 ’ 

(30) 

(31) 

(32) 

(33) 

leaving the two effects with the same relative value as Eqs. (22b) 

and (25b). If the compensated results in Eqs. (33) and (34) are then 

combined with (22b) and (25b) we have as an upper limit for the ap- 

parent increase in beam size 

(34) 

9K02 Q ai 
2 

AA AB 27(2 + E) aO - ,x,-n. = 
A B 8OP p 40 

(4Q)2 
(1 + A2)4 (35) 
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27 Ko2 1ai4 
2 

AR -* = 81(2+E) ao 
R i60Pp 80 

(4Qj2 
(1 + A2)4 (36) 

IV. Additional Coupling Effects 

Similar distortions can be caused by higher multipole compo- 

nents of the main quadrupole field. In fact the similarity of the im- 

pulses due to a 24-pale component to those in Eqs. (18a) and (18b) 

suggest that the relative importance of the non-linear term to the 

coupling term can be changed if desired. 

If the field in the central member of each triplet is derived from 

the scalar potential 

* = const [ Koxy - K1(x3y - xy3)], 

then Eqs. (17a) and (17b) become 

x” + KOx = - K1(3xy2 -x3) > 

y’l _ Kg = -Ki(3x2y - y3) , 

(37) 

(38a) 

(3%) 

corresponding to the additional impulse 

Ax’ = 2KIP (3xy2 -x3) > (3%) 

Ay’ = 2Kii (3x2y - y3) (3%) 

It is clear that the nonlinear (x3, y3) and coupling (x2y, xy2) terms in 

Eq. (18) can be exchanged for each other by choosing Ki appropriately. 
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For example, if 2K 1 = Ko2, the borders of the x-x’ and y-y’ projections 

will not grow. Of course the radius of the beam in a 45 deg direction 

(x = *y) will increase by a correspondingly larger amount. It should 

2. be pointed out however that any condition like 2Kt = K. implies com- 

pensation depending on magnetic excitation. This would require modifi- 

cation of the usual quadrupole designs, including additional windings, 

if the compensation is to be correct for different gradient settings. 

V. Summary 

We have made a crude estimate of the distortion produced by 

quadrupole fringing fields for a periodic transport system. This es - 

timate contained in Eqs. (35) and (36), indicates that one should design 

a system with a0 and A as small as possible and 1as large as possible. 

For transport of high current proton beams in the region between the 

electrostatic accelerator and the linac. the parameter E is generally 

quite large compared to 1. In this case the combination of parameters 

in Eqs. (35) and (36), governing the magnitude of the distortion, is 

4 
I al - -. 

P3 P2P2 
(39) 

Of course, there is a practical lower limit to al since the smaller ai 

is, the closer together the triplets must be. 

One point which should be mentioned is that the transport system 

may consist of equally spaced quadrupole magnets instead of triplets, 



FN-166 
-12- 2040 

much as within the linac. This should permit lower quadrupole fields 

and less distortion in the fringing fields. However our previous analy - 

sis is made difficult because the beam no longer has circular symmetry. 

Any actual design will also have to include matching both to the 

emittance of the source and to the admittance of the linac. Moreover, 

the beam will become bunched following the buncher region, and this 

will change the magnitude of the space charge force. For this and many 

other reasons the results in this note are only intended to be guides, 

and actual orbit calculations through real transport systems will be 

necessary to establish the relevant parameters. 

The present work also indicates that the major part of the quadru- 

pole fringing field distortion can be removed by small adjustments in the 

quadrupole strengths. The remaining distortion consists of a growth 

both in the x-x’, y-y’ projections, and in the beam radius. If desirable, 

one can be reduced at the expense of the other by building higher multi- 

poles into the quadrupole fields. 
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